sl Archive material from Edition 2 of Distributed Systems:

Concepts and Design
| i © George Coulouris, Jean Dollimore & Tim Kindberg 1994
| j' Permission to copy for all non-commercial purposes is hereby granted
i

Originally published at pp. 594-97 of Coulouris, Dolllimore and Kindberg, Distributed Systems, Edition 2, 1994.

A comparison of Mach, Amoeba and Chorus

Amoebais a complete and novel distributed operating system constructed as a collection of user-
level servers supported by the microkernel. Mach and Chorus are primarily microkernel designs
geared towardsthe emul ation of existing operating systems, notably UNIX, inadistributed system.

Mach, Chorus and Amoeba have many common genera goals, including the support of
network transparency, encapsulated resource management and user-level servers. In Mach and
Chorus, some objects are managed by the kernel and others by user-level servers, whereas all
Amoeba objects are managed outside the kernel. Chorus allows user-level servers to be loaded
dynamically in the kernel address space.

Mach, Chorus and Amoeba al provide separate abstractions of processes and threads. Mach
and Chorus can take advantage of a multiprocessor.

The Amoebakernel interfaceisvery simple, because of its simple communication model and
lack of support for virtual memory. The Mach and Chorus kernels offer many more calls due to
their more complex communication models and the desire to emulate UNIX.

Naming and protecting resources¢ Resources are named and protected by capabilities in
Amoeba and Chorus and by portsin Mach. Resources identified by capabilitiesin Amoebaand in
Chorus are accessed by sending a message to the appropriate server port and the server accesses
the particular resource identified in the capability. In Mach, servers generally manage many ports,
one for every resource. Resources are accessed by sending messages to the corresponding ports.

Capabilities alone are not suitable for implementing the sort of identity-based access control
reguired in UNIX file systems. The Chorus kernel provides protection identifiers to enable user-
level services to authenticate the actor that sent a message and the port used by that actor.

Mach's port rights are capabilities that confer send or receive rights on the process that
possesses them. However, unlike Amoeba’s capabilities and Chorus's port identifiers, which can
be freely constructed and manipulated at user-level, Mach'’s port rights are stored inside the kernel
and protected by it, allowing efficient representations and rapid access. But the Mach kernel has
the additional expense of processing port rights in messages.

For local communication, the Mach approach eliminates the need for random number
generators and one-way functions, which are associated with Amoeba capabilities. However, in a
secure environment, the Mach network servers must encrypt port rights transmitted in messages.

Amoeba capabilities and Chorus capabilities can persist beyond the execution of any process
that uses them. An Amoeba capability for a persistent resource such as afile can be stored in a
directory. Each component of the capability, in particular the port identifier, remains valid as long
as the file exists and the check field has not been changed at the server. By contrast, Mach
capabilitiesfor send rights are volatile. To access aresource, aMach client requires ahigher-level,
persistent identifier to obtain the current identifier of the appropriate send rights; this higher-level
identifier must be resolved by the service concerned before access can be obtained.

There does not seem to be a clear winner between Mach’s scheme of kernel-managed port
capability transfers, and the Chorus and Amoeba scheme of user-controlled capability transfers. In
Amoeba, processes are obliged to generate port identifiers themselves, and then test for their



A COMPARISON OF MACH, AMOEBA AND CHORUS 2

uniqueness. The Chorus port naming scheme improves upon this since the kernel generates Ulsfor
port identifiers, thus avoiding clashes.

Both Amoeba and Chorus alow for groups of servers to manage resources. In Amoeba the
processes form groups, but in Chorus processes effectively become members of groups by making
their portsjoin port groups.

I nter process communication ¢ The Mach, Chorus and Amoebakernelsall provide a synchronous
request-reply protocol. Chorus and Mach also provide for asynchronous message passing. Mach
packagesall forms of message passing in asingle system call, whereas Chorus provides alternative
cals.

Amoeba and Chorus provide for group communication. In the case of Amoeba this is a
reliable, totally ordered multicast to be used by the members of a process group. Chorus provides
an unreliable multicast to all the members of a group of ports or to selected members. Chorus
services can be reconfigured by servers adding or removing their ports from a group.

Messages ¢ Amoeba messages consist of afixed-size header and an optional out-of-line block of
data of variable size. But Mach is more flexible in that it allows multiple out-of-line blocks in a
single message. Mach and Chorus employ their virtual memory management techniques to the
passing of large messages between processes in the same computer.

The contents of Mach messages are typed — enabling port rights to be transmitted. M essages
in Chorus and Amoeba are just contiguous sequences of bytes.

Network communication ¢ Communication between processes in different computers is
performed in Mach and Chorus by user-level network servers running at every computer. The
network servers are also responsible for locating ports.

The Amoebakernel supports network communication directly, and ishighly tuned to achieve
rapid request-reply interactions over a LAN. The Amoeba designers considered that the extra
context switching costs that would be incurred through use of a separate, user-level network
manager process would be prohibitive,

Mach, Chorus and Amoeba use similar schemes for locating ports. Location hints are used
first but if those fail they resort to broadcasting.

The use of user-level network servers should allow for a variety of protocols. However,
Mach’s network servers primarily use TCP/IP as the transport protocol. Chorus also sticks to
international standards, providing Internet and OSI protocols. However, this is not necessarily
suitable on LANs when request-reply interactions predominate.

The Amoeba kernel supports an RPC protocol based upon the FLIP datagram protocol,
which is optimized for performance on small sets of connected LANS.

A figure of 11 milliseconds for a null RPC in Mach on a Sun-3/60 is quoted by Peterson et
al. [1990]; for a DECStation 5000/200 the figure is 6.3 milliseconds [Orman et al. 1993]. The
poorness of these figures compared to, say, Amoeba's of 1.4 milliseconds on a 68020-based
computer is in part due to the transport protocol used. It is not totally due to this factor: a
conventional UNIX implementation on a Sun-3/75 takes 6.1 milliseconds using TCP [Peterson et
al. 1990]. (All figures are for a 10 megabits-per-second Ethernet.) Recently, Mach IPC has been
re-implemented using the x-kernel, with the transport protocols placed in the kernel to improve
performance. Orman et al. [1993] quote an improved null RPC figure of 4.8 milliseconds.

Memory management ¢ Amoeba has very simple memory management scheme without virtual
memory. In contrast Mach and Chorus provide similar very powerful and flexible virtual memory
management schemes allowing avariety of different ways of sharing between processes, including
copy-on-write.

Mach and Chorus both make use of external pagers and local caches, which alow virtual
memory to be shared between processes, even when they run in different computers.

UNIX emulation ¢ Amoeba does not provide binary compatibility with UNIX. Chorus and Mach
both provide emulation of UNIX as subsystems.

Archive material from Edition 2 of Distributed Systems — Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994



A COMPARISON OF MACH, AMOEBA AND CHORUS 3

References

[Peterson et al. 1990] Peterson, L., Hutchinson, N., O'Malley, S. and Rao, H. (1990). The
x-kernel: A Platform for Accessing Internet Resources. |IEEE
Computer, vol. 23, no. 5, pp. 23-33.

Archive material from Edition 2 of Distributed Systems — Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994



