L^p Functions

Given a measure space (X, μ) and a real number $p \in [1, \infty)$, recall that the L^p -norm of a measurable function $f: X \to \mathbb{R}$ is defined by

$$||f||_p = \left(\int_X |f|^p \, d\mu\right)^{1/p}$$

Note that the L^p -norm of a function f may be either finite or infinite. The L^p functions are those for which the p-norm is finite.

Definition: L^p Function

Let (X, μ) be a measure space, and let $p \in [1, \infty)$. An \mathbf{L}^p function on X is a measurable function f on X for which

$$\int_X |f|^p \, d\mu < \infty.$$

Like any measurable function, and L^p function is allowed to take values of $\pm \infty$. However, it follows from the definition of an L^p function that it must take finite values almost everywhere, so there is not harm in restricting to L^p functions $X \to \mathbb{R}$.

It is easy to see that any scalar multiple of an L^p is again L^p . Moreover, if f and g are L^p functions, then by Minkowski's inequality

$$||f + g||_p \le ||f||_p + ||g||_p < \infty$$

so f+g is an L^p function. Thus the set of L^p functions forms a vector space.

EXAMPLE 1 L^p Functions on [0,1]

Any bounded function on [0,1] is automatically L^p for every value of p. However it is possible for the p-norm of a measurable function on [0,1] to be infinite. For example,

let $f:[0,1]\to\mathbb{R}$ be the function

$$f(x) = \frac{1}{x}$$

where the value of f(0) is immaterial. Then by the monotone convergence theorem,

$$\int_{[0,1]} |f| \, dm \, = \, \lim_{a \to 0^+} \int_{[a,1]} \frac{1}{x} \, dm(x) \, = \, \lim_{a \to 0^+} \left[\log x \right]_a^1 \, = \, \infty$$

so f is not L^1 . Indeed, it is easy to check that f is not L^p for any $p \in [1, \infty)$.

A function with a vertical asymptote does not automatically have infinite p-norm. For example, if

$$f(x) = \frac{1}{\sqrt{x}}$$

then f has a vertical asymptote at x = 0, but

$$\int_{[0,1]} |f| \, dm \, = \, \lim_{a \to 0^+} \int_{[a,1]} \frac{1}{\sqrt{x}} \, dm(x) \, = \, \lim_{a \to 0^+} \left[2\sqrt{x} \right]_a^1 \, = \, 2.$$

In general,

$$\int_{[0,1]} \frac{1}{x^r} dm(x) = \begin{cases} \infty & \text{if } r \ge 1\\ 1/(1-r) & \text{if } r < 1. \end{cases}$$

It follows that the function $f(x) = 1/x^r$ is L^p if and only if pr < 1, i.e. if and only if p < 1/r. For example, $f(x) = 1/\sqrt{x}$ is L^p for all $p \in [1, 2)$, but is not L^p for any $p \in [2, \infty)$.

The last example suggests that it should be *harder* for a function to be L^p the larger we make p. The following proposition confirms this intuition.

Proposition 1 Relation Between L^p and L^q

Let (X, μ) be a measure space, and let $1 \le p \le q < \infty$. If $\mu(X) = 1$, then

$$||f||_p \le ||f||_q$$

for every measurable function f. More generally, if $0 < \mu(X) < \infty$, then

$$||f||_p \le \mu(X)^r ||f||_q$$

for every measurable function f, where r = (1/p) - (1/q), and hence every L^q function is also L^p .

PROOF The case where $\mu(X) = 1$ is the generalized mean inequality for the *p*-mean and the *q*-mean. For $0 < \mu(X) < \infty$, let $C = \mu(X)$, and let ν be the measure

$$d\nu = \frac{1}{C} d\mu.$$

Then $\nu(X) = 1$, so by the generalized mean inequality

$$\left(\int_{X} |f|_{p} d\mu\right)^{1/p} = C^{1/p} \left(\int_{X} |f|^{p} d\nu\right)^{1/p}$$

$$\leq C^{1/p} \left(\int_{X} |f|^{q} d\nu\right)^{1/q} = C^{1/p} C^{-1/q} \left(\int_{X} |f|^{q} d\mu\right)^{1/q}. \quad \blacksquare$$

Note that this proposition only applies in the case where $\mu(X)$ is finite. As the following example shows, the relationship between L^p and L^q functions can be more complicated when $\mu(X) = \infty$.

EXAMPLE 2 Horizontal Asymptotes

Let $f: [1, \infty) \to \mathbb{R}$ be the function

$$f(x) = \frac{1}{x}.$$

Then f is not L^1 , since by the monotone convergence theorem

$$\int_{[1,\infty)} |f| \, dm \, = \, \lim_{b \to \infty} \int_{[1,b]} \frac{1}{x} \, dm(x) \, = \, \lim_{b \to \infty} \left[\log x \right]_1^b \, = \, \infty.$$

However f is L^2 , since

$$\int_{[1,\infty)} |f|^2 dm = \lim_{b \to \infty} \int_{[1,b]} \frac{1}{x^2} dm(x) = \lim_{b \to \infty} \left[-\frac{1}{x} \right]_1^b = 1.$$

In general,

$$\int_{[1,\infty)} \frac{1}{x^r} dm(x) = \begin{cases} 1/(r-1) & \text{if } r > 1\\ \infty & \text{if } r \le 1. \end{cases}$$

Thus $f(x) = 1/x^r$ is L^p if and only if pr > 1, i.e. if and only if p > 1/r.

Thus, for horizontal asymptotes it is *easier* for a function to be L^p the larger the value of p. Intuitively, this is because numbers close to 0 get smaller when taken to a larger power, so $|f|^p$ will be closer to the x-axis the larger the value of p.

ℓ^p Sequences

An important special case of L^p functions is for the measure space (\mathbb{N}, μ) , where μ is counting measure on \mathbb{N} . In this case, a measurable function f on \mathbb{N} is just a sequence

$$f(1), f(2), f(3), \dots$$

and the Lebesgue integral is the same as the sum of the series

$$\int_{\mathbb{N}} f \, d\mu \, = \, \sum_{n \in \mathbb{N}} f(n).$$

The definition of an L^p function on \mathbb{N} takes the following form.

Definition: ℓ^p -Norm and ℓ^p Sequences

If $p \in [1, \infty)$, the ℓ^p -norm of a sequence $\{a_n\}$ of real numbers is defined by the If $p \in [1, \infty)$, one a formula $\|\{a_n\}\|_p = \left(\sum_{n \in \mathbb{N}} |a_n|^p\right)^{1/p}.$ An ℓ^p sequence is a sequence $\{a_n\}$ of real numbers for which $\sum |a_n|^p < \infty.$

$$\|\{a_n\}\|_p = \left(\sum_{n \in \mathbb{N}} |a_n|^p\right)^{1/p}.$$

$$\sum_{n \in N} |a_n|^p < \infty$$

Sequences behave in a similar manner to functions with horizontal asymptotes.

EXAMPLE 3 P-series

Recall that the *p*-series

$$\sum_{p=1}^{\infty} \frac{1}{n^p}$$

converges if and only if p > 1. It follows that the sequence $\{1/n^p\}$ is ℓ^1 if and only if p > 1. For example,

$$\left\{\frac{1}{n^2}\right\}$$
 is ℓ^1 but $\left\{\frac{1}{n}\right\}$ and $\left\{\frac{1}{\sqrt{n}}\right\}$ are not.

Moreover, since $(1/n^r)^p = 1/n^{rp}$, we find that $\{1/n^r\}$ is ℓ^p if and only if p > 1/r. Thus

$$\left\{\frac{1}{n}\right\}$$
 is ℓ^2 but not ℓ^1 ,

and

$$\left\{\frac{1}{\sqrt{n}}\right\}$$
 is ℓ^3 but not ℓ^2 .

All of this is very similar to our analysis of the function $1/x^p$ on $[1, \infty]$. Indeed, it follows from the integral test that

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx < \infty \quad \text{if and only if} \quad \sum_{n=1}^{\infty} \frac{1}{n^{p}} < \infty$$

so there is a strong theoretical relationship between these two cases.

Proposition 2 Relationship Between ℓ^p and ℓ^q

If $1 \le p < q < \infty$, then every ℓ^p sequence is also ℓ^q .

PROOF Let $\{a_n\}$ be an ℓ^p sequence. Then

$$\sum_{n\in\mathbb{N}} |a_n|^p$$

converges, so it must be the case that $a_n \to 0$ as $n \to \infty$. In particular, there exists an $N \in \mathbb{N}$ such that $|a_n| < 1$ for all $n \ge N$. Then $|a_n|^q < |a_n|^p$ for all $n \ge N$, so

$$\sum_{n\in\mathbb{N}} |a_n|^q$$

converges by the comparison test.

Incidentally, Hölder's inequality is very interesting for sequences, since it essentially functions as a new convergence test for series.

Theorem 3 Hölder's Inequality for Sequences

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers, and let $p, q \in [1, \infty)$ so that 1/p + 1/q = 1. If the series

$$\sum_{n=1}^{\infty} |a_n|^p \qquad and \qquad \sum_{n=1}^{\infty} |b_n|^p$$

both converge, then the series

$$\sum_{n=1}^{\infty} a_n b_n$$

converges absolutely, and

$$\left| \sum_{n=1}^{\infty} a_n b_n \right| \leq \left(\sum_{n=1}^{\infty} |a_n|^p \right)^{1/p} \left(\sum_{n=1}^{\infty} |b_n|^q \right)^{1/q}.$$

Corollary 4 Cauchy-Schwarz Inequality for Sequences

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers. If the series

$$\sum_{n=1}^{\infty} a_n^2 \qquad and \qquad \sum_{n=1}^{\infty} b_n^2$$

both converge, then the series

$$\sum_{n=1}^{\infty} a_n b_n$$

converges absolutely, and

$$\left(\sum_{n=1}^{\infty} a_n b_n\right)^2 \leq \left(\sum_{n=1}^{\infty} a_n^2\right) \left(\sum_{n=1}^{\infty} b_n^2\right).$$

L^p Completeness

It is possible to generalize the completeness theorem to L^p .

Definition: L^p Sequences

Let (X, μ) be a measure space, let $\{f_n\}$ be a sequence of measurable functions on X, and let $p \in [1, \infty)$.

1. We say that $\{f_n\}$ is an L^p Cauchy sequence if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ so that

$$i, j \ge N \quad \Rightarrow \quad ||f_i - f_j||_p < \epsilon.$$

2. We say that $\{f_n\}$ has bounded \boldsymbol{L}^p -variation if

$$\sum_{n\in\mathbb{N}} \|f_{n+1} - f_n\|_p < \infty.$$

3. We say that $\{f_n\}$ converges in L^p to a measurable function f if

$$\lim_{n \to \infty} ||f_n - f||_p = 0.$$

Theorem 5 L^p Convergence Criterion

Let (X, μ) be a measure space, and let $\{f_n\}$ be a sequence of measurable functions on X with bounded L^p -variation. Then $\{f_n\}$ converges pointwise almost everywhere to a measurable function f, and $f_n \to f$ in L^p .

PROOF Let

$$M = \sum_{n \in \mathbb{N}} ||f_{n+1} - f_n||_p < \infty.$$

and let

$$g = \sum_{n=1}^{\infty} |f_{n+1} - f_n|$$
 and $g_N = \sum_{n=1}^{N} |f_{n+1} - f_n|$

for each $N \in \mathbb{N}$. By Minkowski's inequality,

$$||g_N||_p \le \sum_{n=1}^N ||f_{n+1} - f_n||_p \le M$$

for all $N \in \mathbb{N}$. By the monotone convergence theorem, it follows that

$$\int_{X} g^{p} d\mu = \int_{X} \lim_{N \to \infty} g_{N}^{p} d\mu = \lim_{N \to \infty} \int_{X} g_{N}^{p} d\mu = \lim_{N \to \infty} \|g_{N}\|_{p}^{p} \leq M^{p} < \infty.$$

From this we conclude that $g(x) < \infty$ for almost all $x \in X$, so $\{f_n(x)\}$ has bounded variation for almost all $x \in X$, and hence $\{f_n(x)\}$ converges pointwise almost everywhere.

Let f be the pointwise limit of the sequence $\{f_n\}$, and note that for each $n \in \mathbb{N}$,

$$f - f_n = \lim_{N \to \infty} f_{N+1} - f_n = \lim_{N \to \infty} \sum_{k=n}^{N} (f_{k+1} - f_k) = \sum_{k=n}^{\infty} (f_{k+1} - f_k)$$

almost everywhere. Then

$$|f - f_n|^p = \left| \sum_{k=n}^{\infty} (f_{k+1} - f_k) \right|^p \le \left(\sum_{k=n}^{\infty} |f_{k+1} - f_k| \right)^p \le g^p$$

almost everywhere, so by the dominated convergence theorem

$$\lim_{n \to \infty} \int_X |f - f_n|^p d\mu = \int_X \lim_{n \to \infty} |f - f_n|^p d\mu = 0.$$

Thus $f_n \to f$ in L^p .

 L^p completeness follows easily. We leave the proof to the reader.

Theorem 6 L^p Completeness

Let (X, μ) be a measure space, and let $\{f_n\}$ be an L^p Cauchy sequence on X. Then $\{f_n\}$ converges in L^p to some measurable function f on X.

The L^{∞} Norm

It is possible to extend the L^p norms in a natural way to the case $p=\infty$.

Definition: L^{∞} -Norm

Let (X, μ) be a measure space, and let f be a measurable function on X. The L^{∞} -norm of f is defined as follows: $\|f\|_{\infty} = \min\{M \in [0, \infty] \mid |f| \leq M \text{ almost everywhere}\}.$ We say that f is an L^{∞} function if $\|f\|_{\infty} < \infty$.

$$||f||_{\infty} = \min\{M \in [0, \infty] \mid |f| \le M \text{ almost everywhere}\}$$

Note that the set

$$\{M \in [0,\infty] \mid |f| \le M \text{ almost everywhere} \}$$

really does have a minimum element, for if $|f| \leq M + 1/n$ almost everywhere for all $n \in \mathbb{N}$, then it follows that $|f| \leq M$ almost everywhere.

The L^{∞} -norm $||f|_{\infty}$ is sometimes called the **essential supremum** of |f|, and L^{∞} functions are sometimes said to be essentially bounded or bounded almost **everywhere**. Note that a continuous function on \mathbb{R} is L^{∞} if and only if it is bounded, in which case $||f||_{\infty}$ is equal to the supremum of |f|.

Much of what we have done for $p \in [1, \infty)$ also works for $p = \infty$. We list some of the results, and leave the proofs to the reader:

Minkowski's Inequality. If f and g are L^{∞} functions, then f+g is L^{∞} , and

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

Hölder's Inequality. If f is an L^1 function and g is an L^{∞} function, then fg is Lebesgue integrable and

$$|\langle f, g \rangle| \le ||f||_1 ||g||_{\infty}.$$

 L^{∞} Convergence. If $\{f_n\}$ is a sequence of functions, we say that $\{f_n\}$ converges in L^{∞} to a function f if

$$\lim_{n\to\infty} ||f_n - f||_{\infty} = 0.$$

This turns out to be the same as uniform convergence almost everywhere, i.e. $f_n \to f$ in L^{∞} if and only if there exists a set Z of measure zero such that $f_n \to f$ uniformly on Z^c .

 L^{∞} Completeness. If $\{f_n\}$ is an L^{∞} Cauchy sequence of measurable functions, then $\{f_n\}_{\infty}$ converges in L^{∞} to some measurable function f.

Relation Between L^{∞} and L^{p} If $\mu(X) = 1$, then $||f||_{p} \leq ||f||_{\infty}$ for any measurable function f on X. More generally, if $0 < \mu(X) < \infty$ then

$$||f||_p \le \mu(X)^{1/p} ||f||_{\infty}$$

for all p, so any L^{∞} function on X is also L^p for all $p \in [1, \infty)$.

In the case of sequences, the L^{∞} norm takes the following form.

Definition: ℓ^{∞} -Norm

Let $\{a_n\}$ be a sequence of real numbers. The ℓ^{∞} -norm of $\{a_n\}$ is defined as follows:

$$\|\{a_n\}\|_{\infty} = \sup_{n \in \mathbb{N}} |a_n|$$

Thus an ℓ^{∞} sequence is the same as a bounded sequence. Note that if $p \in [1, \infty)$, then any ℓ^p sequence must be ℓ^{∞} , since any ℓ^p sequence must converge to zero.

Exercises

For the following exercises, let (X, μ) be a measure space.

- 1. Let $f:[0,\infty)\to\mathbb{R}$ be the function $f(x)=e^{-x}$. For what values of p is f an L^p function?
- 2. Let $f:(0,\infty)\to\mathbb{R}$ be the function

$$f(x) = \begin{cases} x^{-1/3} & 0 < x < 1, \\ x^{-1/2} & 1 \le x < \infty. \end{cases}$$

For what values of p is f an L^p function?

- 3. Let $f: [0,1] \to [0,\infty]$ be the function $f(x) = -\log x$, with $f(0) = \infty$.
 - (a) Show that f is L^1 .
 - (b) Show that f is L^p for all $p \in [1, \infty)$. (Hint: Substitute u = 1/x.)

4. For what values of p is

$$\left\{ \frac{1}{(n^2+1)^{1/3}} \right\}$$

an ℓ^p sequence?

5. For what values of p is

$$\left\{\frac{1}{\sqrt{n}\,\log n}\right\}$$

an ℓ^p sequence?

- 6. Prove that every L^p Cauchy sequence has a subsequence of bounded L^p -variation.
- 7. Prove the L^p completeness theorem (Theorem 6).
- 8. If f and g are measurable functions on X, prove that $||f+g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$.
- 9. If f is an L^1 function on X and g is an L^{∞} function on X, prove that fg is Lebesgue integrable and $|\langle f, g \rangle| \leq ||f||_1 ||g||_{\infty}$.
- 10. Let $\{f_n\}$ be a sequence of measurable functions on X, and let f be a measurable function on X. Prove that $f_n \to f$ in L^{∞} if and only if $f_n \to f$ uniformly almost everywhere.
- 11. If $0 < \mu(X) < \infty$ and f is a measurable function on X, prove that

$$||f||_p < \mu(X)^{1/p} ||f||_\infty$$

for all $p \in [1, \infty)$.

12. Prove that every L^{∞} Cauchy sequence of measurable functions converges uniformly almost everywhere.